Maths, Physics & Chemistry
How an artificial molecular machine pumps in nanoscale
Nature often uses sophisticated strategies beyond our imagination. For example, biomolecules such as enzymes and nucleic acids form dynamic networks, in which they loosely associate with each other only when they need to perform a task together. Taking inspiration from such weak and temporary interactions,... click to read more
The World’s Longest Nanoscale Chain
A sheet of metal or wood is an inflexible one-dimensional material. Creating flexible one-dimensional structures from such hard materials is difficult, but can be done using chain-like structures made of interlocking of rings. Moreover, chain-like structures endow materials with ease of repairing any damage by... click to read more
Battling pollution by navigating particle traffic
Humanity is facing a water crisis. Industry requirements exceed our fresh water resources and water scarcity is on the horizon. Underground water is an essential source of freshwater, but it is very susceptible to contamination. As such we need to perfect processes we use to... click to read more
Cheetah-inspired soft robots: how to make robots run fast?
Soft robots are made of rubber-like soft materials that mimic soft-bodied insects and animals such as caterpillar, snake, jellyfish, and octopus. Unlike conventional rigid robots, soft robots can continuously deform their soft body to navigate through confined spaces, thereby enabling safe and adaptive interactions with... click to read more
The travel time of light inside the hydrogen molecule
The wave-particle duality is arguably one of the most intriguing concepts of quantum mechanics. Depending on the circumstances of the observation, a fundamental particle–like an electron–shows either wave- or particle-like behavior. One typical wave phenomenon is interference, where crests and troughs of two or more... click to read more
Editor's picks
Most popular
Popular topics